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Course Overview

Overview

In the following, we will introduce quantum algorithms (Such as,
Shor factoring algorithm, Grover search algorithms),three quantum
computing models: quantum Circuit model,quantum adiabatical
computation model and one-way computer. We also introduce how
to realize real quantum computation in ion trap and linear optics. At
last, we will introduce quantum error-correction theory and
fault-tolerant quantum computation.
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Course Overview

Contents

Introduction of quantum computation and computation
complexity

quantum algorithm (I): Duetch-Jozsa algorithm and Grover
algorithm

quantum algorithm (II): Simon algorithm,quantum Fourier
Transform and Shor factoring algorithm

Three quantum computation models (I): computation circuit

Three quantum computation models (II): quantum adiabatical
computation

Three quantum computation models (III): one-way computer
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Course Overview

Continue contents

Toward real quantum computation: physical system (I) linear
optics

Toward real quantum computation: physical system (II) ion trap

Toward real quantum computation: noise and decoherence

Toward real quantum computation: Error-correction (I) stabilizer
code

Toward real quantum computation: Error-correction (II)
topological quantum computation

Toward real quantum computation: fault-tolerant computation

Website

http://lqcc.ustc.edu.cn/simulate/upload
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Introduction quantum computation and computation complexity

quantum computing history

Church-Turning machine is universal for any algorithm process

any algorithm process can be efficiently simulated by
probabilistic Turning machine

D. Deutch proposed a quantum Turning machine on the same
way

R. Feynman suggested to simulate quantum system by a simple
quantum system

several algorithms show the power of quantum computation:
Deutch-Jozsa algorithm, Simon algorithm, quantum QFT, Shor
algorithm, Grover algorithm

Can quantum computation beyond classical computation?
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Quantum computation and computation complexity Introduction

computation complexity

The classical computation complexity classes are based on the
computing model of classical Turning model. Since the universality of
this computation model, the classes are well defined.

How to define the difficulty to solve a problem? the criterion of
the complexity of a problem is based on time scaling

P problem: a Problem can be solved in polynomial time
NP problem: a problem can be checked in polynomial time

the most important problem is the relation between P and NP.

The most difficulty problems in NP are NPC problems, NPC
problems are also universal. The first proven NPC problem is
3-SAT problem

3-SAT problem is a Boolean decision problem: Do exist logic
values make all the clauses true?
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Quantum computation and computation complexity Introduction

computation complexity

Since the quantum computer can factor a integer more efficiently
than the classical computer, Can we solve all the problems in NP
class efficiently? We have some hints in this problem

Shor algorithm is more efficient than any classical algorithm and
can factor a integer efficiently.

Factering problem is a NP problem
Open question: whether Factering problem is a NPC problem

Quantum computation is based on parallelism of quantum
mechanics while the finite parallelism can not reduce the source
scaling based on a search-based methodology

But quantum computation have a different structure (we will see
in the 3 computation models), this failed method do not exclude
the quantum computer can solve NP problem efficiently.
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Quantum computation and computation complexity introduction

computation complexity

Beside the P and NP classes ,There are also some other classes
defined on classical computation model

PSPACE class: the problems can be solved by polynomial space
source

BPP class: the problems can be solved using randomized
algorithms in polynomial time if a bounded probability of error is
allowed

Similar as the classical computation complexity, we can define
quantum complexity.

BQP class: the problems can be solved by quantum computer in
polynomial time if a bounded probability of error is allowed
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Quantum computation and computation complexity introduction

computation complexity

We have defined several computation classes, the key problem in
computational complexity theory is to find the relation between them.
The widely believed relation as following figure though most of them
unproved.
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Quantum algorithm I

Deutsch-Josza algorithm

The quantum algorithm is designed to using the quantum parallelism
to accelerate classical computation. In general, the algorithm is
divided in the following steps:

preparation a initial state, at most time it is |+〉|+〉|+〉...|+〉
a set of operations to evolution the initial state

read out the result

Generally, the output of the result is not unique, the right answer
appear as some finite probability

Deutch-Josza problem

distinguish a function f : {0, 1}n → {0, 1}, a balance one or a
constant one?
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Quantum algorithm I

Deutsch-Josza algorithm

The quantum computer can solved this problem once.

|0〉n|1〉 → (1/2n/2.
∑

x=0,1,..,2n−1

|x〉).1/
√

2(|0〉 − |1〉) (1)

operating Hadamard transformation on every qubit

the last qubit served as a register qubit to save the information

→ (1/2n/2.
∑

x=0,1,..,2n−1

(−1)f(x)|x〉).1/
√

2(|0〉 − |1〉) (2)

operating a black box- n-controlled unitary Uf transformation
on- this state

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉 (3)
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Quantum algorithm I

Deutsch-Josza algorithm

→ (1/2n.
∑

x=0,1,..,2n−1

∑
y=0,1,..,2n−1

(−1)f(x)(−1)x.y|y〉).1/
√

2(|0〉 − |1〉)

(4)

operating Hadamard transformation on the qubit except the last
one (register one)

Hn : |x〉 →
∏
i=1...n

(1/
√

2.
∑
yi=0,1

(−1)xi.yi |yi〉) (5)

= 1/2n/2.
∑

y=0,1,..,2n−1

(−1)x.y|y〉 (6)

x.y is the bitwise AND
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Quantum algorithm I

Deutsch-Josza algorithm

Now we focus on the coefficient of |y〉 , if f is constant

(−1)f(x)(1/2n
∑

x=0,1,..,2n−1

(−1)x.y) = (−1)f(x)δy,0 (7)

When measure the n-qubit system, it will be definitely on state (|0〉)n
however, if f is balance,we measure the n-qubit system, the
probability to find the state (|0〉)n is

1/2n.
∑

x=0,1,..,2n−1

(−1)f(x) = 0 (8)
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Quantum algorithm I

Deutsch-Josza algorithm

The computation complexity of this problem can be fefined in two
different ways

If to judge this problem exactly, it need to check 2n−1+1
numbers

on the other hand, if just to require the probability of error
under some bound ε, the scaling of this problem is

k ∼ 1/2. lg(1/ε) (9)
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Quantum algorithm I

Grover search algorithm

The former question is a bit artificial. Now we turn to a widely used
problem: search a certain item (such as ω) to fit some condition in a
database without order.

Oracle

To submit a query x to the oracle and it tells us whether x = ω or
not. It return as

fω(x) = 0, x 6= ω (10)

fω(x) = 1, x = ω (11)
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Quantum algorithm I

Grover search algorithm

At first we define a black box similar in Deutch Josza algorithm

Ufω : |x〉|y〉 → |x〉|y ⊕ f(x)〉 (12)

This black box operating as

Ufω : |x〉(|0〉 − |1〉)→ (−1)fω |x〉(|0〉 − |1〉) (13)

If ignore the second register, the transformation will be

Uω : |x〉 → (−1)fω |x〉 (14)

or

Uω : I − 2|ω〉〈ω| (15)
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Quantum algorithm I

Grover search algorithm

Geometry interpretation of the Oracle

We need to define another transformation

Us : 2|s〉〈s| − I (16)

where |s〉 = 1/
√
N.

∑
x=0,1,..2N−1 |x〉

now to define the operator of grover algorithm

Rgrov = Us.Uω (17)
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Quantum algorithm I

Grover search algorithm

Geometry interpretation of Grover operator

The Rgrov operator rotate the state |s〉 to the final state |ω〉 as
2θ in the plane determined by |s〉 and |ω〉 , here
sinθ = 1/

√
N = 〈s|ω〉

Since it will rotate 2θ by each step, T step will receive
(1 + 2T )θ. It should be optimized to close π/2

(2T + 1)θ ≈ π/2⇒ 2T + 1 ≈ π/2θ (18)

for large N,it can be simplified as T = π/4.
√
N
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Quantum algorithm I

Grover search algorithm

the scaling of the search problem is
√
N , instead of N which is

the scaling of the classical algorithm

the probability of get the right answer is about
sin2((2T + 1)θ)) = 1−O(1/N)

search problem is a widely used problem, many problem can be
translate to this problem. So the speedup has some kind of
universal character for NP problem.

Grover algorithm is the optimal search algorithm for unsorted
database

For multiple solution, the algorithm can also work. But the
number of the solution should be known before, and the state
|ω〉 should be changed as |ω̃〉 = 1/

√
r.(

∑
i=0,1,..r |ωi〉) where r is

the solution number. (Exercise)
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Quantum algorithm I

Summary

Inputs: (1) a black box: U |x〉|q〉 = |x〉|q ⊕ f(x)〉,where
f(x) = 0 when 0 ≤ x ≤ 2n except x = ω; (2)n+ 1 qubits in the
state |0〉
Output: ω

Runtime: O(
√

2n) operations and Succeeds with probability
O(1).
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Quantum algorithm I

Summary continue

Procedure

|0〉
⊕
n|0〉 initial state

→ |ψ〉 =
1√
2n

∑
x=0,1,..,2n−1

|x〉[ |0〉 − |1〉√
2

]

apply H to the first n and HX to the last qubits

→ [RG]
⊗
R|ψ〉 ≈ |ω〉[ |0〉 − |1〉√

2
]

apply Grover iteration R times

→ ω measure the first n qubits
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Quantum algorithm II

Simon algorithm

Problem: Known the function f(x) has a period, that is

f(x) = f(y) ⇐⇒ y = x
⊕

a (19)

where
⊕

is a bitwise XOR operation.

For classical case, If we calculate 2n/4 number of the function,
the pair can be constructed is 2n/2 − 2n/4. By these data, the
probability to find the period a is less than

2−n ∗ (2n/2 − 2n/4) = 2−n/2 − 2−3n/4 < 2−n/2 (20)

which is exponentially small
For quantum case, we also define a unitary black box

Uf : (
∑

x=0,1,..,2n−1

|x〉)|0〉 → (
∑

x=0,1,..,2n−1

|x〉)f(x)〉 (21)
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Quantum algorithm II

Simon algorithm

measure the second register,assume the result is f(x0). Since
the period of a, the rest register will be a superposition state

1/
√

2(|x0〉+ |x0 + a〉) (22)

operate Hadamard transformation on every qubit

Hn : 1/
√

2(|x0〉+ |x0 + a〉) (23)

→ 1/2(n+1)/2
∑

y=0,1,...,2n−1

((−1)x0y + (−1)(x0
⊕
a).y)|y〉 (24)

= 1/2(n−1)/2
∑
a.y=0

((−1)x0y|y〉 (25)

measure on all the register will find some y which satisfy
a.y = 0. Repeat all the processes to get enough independent
y : {y1, y2, .., yn}. Then we can find the period a by solving the
equations.The scaling of the number of repeating is just n.
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Quantum algorithm II

QFT algorithm

Problem: realize a quantum Fourier transformation, which is∑
x

f(x)|x〉 →
∑
y

(1/
√
N

∑
x

e2πixy/Nf(x))|y〉 (26)

The naive way to realize this transformation is write the
transformation as a N ×N matrix, this matrix product a vector.
So the scaling is O(N2)

the well-known classical FFT algorithm can be done as scaling
O(N logN). Suppose N = 2n,x and y can be write in binary
form as

x = (xn−1xn−2...x1x0) (27)

y = (yn−1yn−2...y1y0) (28)
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Quantum algorithm II

QFT algorithm

Since e2πik is a period function. A integer adding to k has no
contribution.

xy/2n ≡ yn−1(.x0)+yn−2(.x1x0)+ ...+y0(.xn−1xn−2...x0) (29)

where

.x2x1x0 = x2/2 + x1/2
2 + x0/2

3 (30)

each coefficient (total N)

f̃(x) = 1/
√
N

∑
y

e2πixy/Nf(y) (31)

can be calculated by yk = 0, 1 in time of scaling n.
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Quantum algorithm II

QFT algorithm

In quantum case, It can be more efficient by quantum parallelism

QFT :|x〉 → 1/
√
N

∑
y

e2πixy/N |y〉 (32)

= 1/
√

2n(|0〉+ e2πi(.x0)|1〉)(|0〉+ e2πi(.x1x0)|1〉) (33)

...(|0〉+ e2πi(.xn−1xn−2...x0)|1〉) (34)

this operation can be implemented by the following way
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Quantum algorithm II

QFT algorithm

where H is a Hadamard gate and Rd acts as

H :|xk〉 → 1/
√

2(|0〉+ e2πi(.xk)) (35)

Rd = {1, 0; 0, eiπ/2
d} (36)

where d is the distance between the qubits.

the source for this circuit need n Hadamard gate and n(n− 1)/2
Control-R gate, so the scaling is O((logN)2)
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Quantum algorithm II

finding the period

Problem: A function

f : {0, 1}n → {0, 1}m (37)

there is a unknown positive period r : 1� r � 2n, that is,

f(x) = f(x+mr) (38)

where m is a integer make x and x+mr lie in {0, 1, 2, ..., 2n − 1}.
Our task is to find the period r.

This problem is very hard in classical case

however, Using the former QFT algorithm, there is a polynomial
time algorithm to solve this problem.

to compare with the Simon’s problem
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Quantum algorithm II

finding the period

similar as Simon algorithm, define a quantum black box

Uf : (
∑

x=0,1,..,2n−1

|x〉)|0〉 → (
∑

x=0,1,..,2n−1

|x〉)f(x)〉 (39)

measure the output register and get result f(x0) (where
0 ≤ x0 ≤ r. The input register will in the superposition state

1/
√
A

∑
j=0,1,2..,A−1

|x0 + jr〉 (40)

where N − r ≤ x0 + (A− 1)r < N , that is,

A− 1 < N/r < A+ 1 (41)

similar as the Simon algorithm we do not measurement the state
directly, we should do QFT on the former superposition state
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Quantum algorithm II

finding the period

we can get the following expression by QFT

1/
√
NA

∑
y=0,1,..,N−1

e2πix0y
∑

j=0,1,..,A−1

e2πijry/N |y〉 (42)

Then we measure in the |y〉 basis, the probability to get the
outcome y is

Prob(y) = |1/
√
NAe2πix0y

∑
j=0,1,..,A−1

e2πijry/N |2 (43)

= A/N |(
∑

j=0,1,..,A−1

e2πijry/N)/A|2 (44)

In the following, we will give a estimate of the probability, which
is

Prob(y) ≥ (4/π2).1/r (45)

Quantum Simulation (USTC) Spring 2011 30 / 91



Quantum algorithm II

finding the period

Estimate Prob(y)

for any geometry series∑
j=0,1,...A−1

eiθj = (eiAθ − 1)/(eiθ − 1) (46)

where θ = 2π.yr(modN)/N
suppose the parameter y satisfies the condition

− r/2 ≤ yr(modN) ≤ r/2 (47)

or− πr/N ≤ θy ≤ πr/N (48)

there are r such y in {0, 1, 2, ..., N − 1}
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Quantum algorithm II

finding the period

under the former condition, the probability can be find

Prob(y) ≥ (4/π2).1/r (49)

By some simple triangle function
calculation,|1− eiθ| = 2| sin θ/2| ≤ |θ|
by the character of sin function |1− eiAθ| ≥ 2A|θ|/π
Using the former inequalities, it can be derived that

|(eiAθ − 1)/(eiθ − 1)| = |(ei(A−1)θ − 1)/(eiθ − 1) + ei(A−1)θ|
(50)

≥ |(eiAθ − 1)/(eiθ − 1)| − 1 (51)

≥ 2(A− 1)/π − (1 + 2/π) (52)

from the equation(41) and (48), we can only get (A− 1)θ ≤ π,
so consider the convex of the distance function.
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Quantum algorithm II

finding the period

since there are r values of y in Eq.(40), we have probability
4/(π2) to get some y0 satisfy (the equation (47))

|y0r − kN | ≤ r/2 (53)

⇒kN/r − 1/2 ≤ y0 ≤ kN/r + 1/2 (54)

⇒k/r − 1/2N ≤ y0/N ≤ k/r + 1/2N (55)

As so far, the measurement gets y0/N , But the parameters k
and r is still unknown.

if r <
√
N , k/r can be uniquely determined by y0/N . This can

be determined by the continued fraction method.
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Quantum algorithm II

finding the period

continued fraction expansion: Suppose s/r is a rational number
such that

|s/r − ϕ| ≤ 1/2r2 (56)

then s/r is a convergent of the continue fraction for ϕ and thus
can be computed in O(logN3) operations using continued
fraction algorithm.

continued fraction algorithm: if

x = a0 +
1

a1 + 1
a2+

1
...

(57)

(For any rational number, it can be expressed as the continued
fraction form as [a0, a1, a3, ...])
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Quantum algorithm II

finding the period

nth convergent of x is [a0, a1, a2, .., an], Using this expression,
we can get the nth rational number convergence pn/qn as

p0 = a0 p1 = a1a0 + 1 ... pn = anpn−1 + pn−2 (58)

q0 = 1 q1 = a1 ... qn = anqn−1 + qn−2 (59)

the condition |k/r − y0/N | ≤ 1/2N ≤ 1/2r2 satisfies the
requirement of continued fraction expansion, so we can can find
the unique values k and r with no common factor

Since k take from {1, 2, .., r − 1}, the probability of k and r
without common factor is φ(r)/γ > e−γ

log logN
,where φ(r) is the

Euler function and γ is a Euler constant about 0.577
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Quantum algorithm II

finding the period

combine the former probabilities to find the probability to find
the right r is about 4

π2
e−γ

log logN

the scaling of this problem is just log logN

any function which can be calculated in polynomial time, there
is a algorithm to find its period in polynomial time

Summary

Input: (1)a black box: U |x〉|y〉 = |x〉|y
⊕
f(x)〉;(2)t = t+ 1

qubit initialized to |0〉 where t = O(L+ log(1/ε)) and r < 2L

Output: the least r such that f(x) = f(x+ r)
Run time: one use U and O(L2) operations, success probability
O(1)
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Quantum algorithm II

Summary continue

procedure:

|0〉|0〉 initial state (60)

→ 1√
2t

∑
x=0,1,..,2t−1

|x|〉|0〉 create superposition (61)

→ 1√
2t

∑
x=0,1,..,2t−1

|x|〉|f(x)〉 apply U (62)

' 1

r
√

2t

∑
l=0,1,2..,,r−1

∑
x=0,1,..,2t−1

e2πilx/r|x|〉|f̃(l)〉 (63)

→ 1√
r

∑
x=0,1,..,r−1

| ˜l/r|〉|f̃(l)〉 apply QFT (64)

→ ˜l/r measure the first register (65)

→ r apply continue fraction algorithm (66)
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Quantum algorithm II

factoring

Problem: Given a composite n-bit number N = pq, to find its
prime factors.

this problem can be reduced to find the period of a function

select a number a randomly, and find GCD(a,N) (this can be
done efficiently by standard Euclidean algorithm)
suppose GCD(a,N) = 1, or GCD(a,N) will be a nontrivial
factor of N
ar will generate a finite cycle group and there is a r satisfied
ar ≡ 1( mod N). So, the function fN,a(x) = ax( mod N)
has a period.
Function fa,N can be efficiently calculated

we use the quantum algorithm to find the period r of fa,N(x).
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Quantum algorithm II

factoring

if r is even, then N can divide (ar/2 + 1)(ar/2 − 1).

N does not divide ar/2 − 1 , or ar/2 ≡ 1( mod N), that is, r/2
is a period.

if N does not divide ar/2 + 1, then GCD(N, ar/2 ± 1) are
nontrivial factor of N . It is done.

There are two condition to make the algorithm success.

r is even

N does not divide ar/2 + 1

there have 1/2 probability to satisfy these conditions.
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Quantum algorithm II

factoring

Summary

Input: A composite number N = pq, where p, q are co-prime
Output: a nontrivial factor of N
Run time: O(log(N)3) operations, success probability O(1)
procedure:

randomly choose a in the range 1 to N − 1, If GCD(a,N) > 1,
then return the factor GCD(a,N).
using quantum period algorithm to get the period r , which
make ar ≡ 1( mod N)
if r is even and a(r/2) ≡ −1( mod N), then compute
GCD(ar/2 − 1, N) and GCD(ar/2 + 1, N), and test to see if
one of them is nontrivial. If so return it. otherwise, the
algorithm fails.
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Quantum algorithm II

other application of QFT

quantum order-finding algorithm

quantum phase estimation

discrete logarithm

hidden subgroup problem
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quantum computation model: computation circuit

introduction

The favorite method to understand the world is to divide it into
some parts

a physical system a software
cell a code for a single task
atom a code for a single function
basic particles basic gates

any algorithm can be constructed by these basic gates

A algorithm is a circuit of basic gates

This is the standard model of classical computation
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quantum computation model: computation circuit

basic classical gates

The classical logical gates

NOT,AND,OR and COPY are basic logical gates of the
classic computation. Any functionf(x) : {0, 1}n → {0, 1} can
be calculated by these connectives.

OR(
∨

) : x
∨
y = x+ y − x.y

AND(
∧

) : x
∧
y = x.y

NOT (̄) : x̄ = 1− x
COPY : x→ xx

NAND or NOR and COPY are another set of basic gates

NAND : x ↑ y = 1− x.y
NOT : x̄ = x ↑ x
AND : x

∧
y = (x ↑ y) ↑ (x ↑ y)

OR : x
∨
y = (x ↑ x) ↑ (y ↑ y)
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quantum computation model: computation circuit

basic quantum gates

If a constant bit can be prepared, the elementary gate can be
reduced to one,such as NAND/NOT: (x, y)→ (1− x, 1− x.y),
Since the preparation of initial state play the similar role as
COPY gate.

ignore the first qubit it will be a NAND gate
set y = 1, it will be a COPY gate

the classical algorithm, code, and software will constructed by these
elementary gates. The complexity of the problem is dependent on the
complexity of the circuit.

COPY play an important role in classical computation, while it
can not work in quantum computation.
One of the difference between classical and quantum gate is that
quantum gate is reversible. Generally, a irreversible computation
can be realized by reversible computation and have the same
computation complexity [C. Bennett claimed].
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quantum computation model: computation circuit

reversible computation gates

to find the universal gates for reversible computation.

The reversible gates f : {0, 1}n → {0, 1}n, can be regard as a
permutation of the 2n strings

there are only 2 gates are reversible for 1-bit gate, I and NOT .

there are (22)! gates are reversible for two-bit gate,such
as,XOR : (x, y)→ (x, x).

one and two-bit reversible gate is not universal for reversible
computation. The are linear. They can not calculate some
nonlinear gate, such as Toffoli gate.

three-bit Toffoli gate is nonlinear and define as

θ(3) : (x, y, z)→ (x, y, z
⊕

x.y) (67)

Toffoli gate is universal for reversible computation.[constructive
proof]
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quantum computation model: computation circuit

basic quantum gates

A quantum computation with quantum Circuit model is divided in
the following sections

a finite number n of qubits are initially set to the value |00..0〉
a quantum circuit constructed from a finite number of quantum
gates work on these qubits.

a Von Neumann measurement of some qubits is performed,
projecting each onto the basis {|0〉, |1〉} The outcome of this
measurement is the result of the computation.

Several comments on this computation model

the Hilbert space prefer to be decomposited into local
subsystems, the basic gate supposed to only operate on their
neighbors
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basic quantum gates

though the Unitary transformation form a continuum, To pursue
the universality, we suppose to find some discrete universal set

The general measurement is POVM, But we can translate this
measurement to Von Neumann measurement on some extended
system.

theoretically, measurement can be done on any basis, But all this
basis can be translated to the computation basis by unitary
transform which can be included in the circuit.

In general, we can measurement during the computation, but all
these measurement can be postponed to the end.

Now we turn to find some universal basic gates.
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basic quantum gates

Before consideration the universal gate, there are several basic facts
about quantum gates

a ’generic’ k-qubit U with eigenvalues {eiθ1 , eiθ2 , .., eiθ2k}
θi are irration multiple of π.
all the θis are incommensurate, that is, each θi/θj is also
irrational.

Un define a point in a 2k-dimensional torus. Under the former
condition, as n ranges over positive integer values, these points
densely fill the whole torus.

Construct a new gate U ′ by a Swapping gate P and an old gate
U by

U ′ = PUP−1 (68)
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basic quantum gates

completing the Lie algebra: known,two generic unitary
transformation eiA and eiB, to come arbitrary close to unitary
transformation ei(αA+βB and ei[A,B]

lim
n→∞

(eiαA/neiβB/n)n (69)

= lim
n→∞

(1 + i/n(αA+ βB))n (70)

=ei(αA+βB (71)

So ei(αA+βB is reachable.
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basic quantum gates

we consider the Lie algebra case now

lim
n→∞

(eiA/
√
neiB/

√
ne−iA/

√
ne−iB/

√
n)n (72)

= lim
n→∞

[(1 + iA/
√
n− A2/2n)(1 + iB/

√
n−B2/2n)

(1− iA/
√
n− A2/2n)(1− iB/

√
n−B2/2n)]n (73)

= lim
n→∞

[1− AB −BA
n

]n (74)

So we can complete a Lie algebra by this method
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basic quantum gates

Deutsch’s three-bit universal quantum gate

The matrix R applies to the third qubit when the first two qubits are
1,otherwise it acts trivially.

R = −iRx(θ) = (−i)exp(iθσx/2) (75)

= (−i)(cosθ
2

+ iσxsin
θ

2
) (76)

it is a rotation by θ around x-axis, where θ is a angle
incommensurate with π
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basic quantum gates

we investigate the universality of Deutsch gate

Due to the character of θ the (4n+ 1)st power can come as
close as we want to σx

the toffoli gate can be reachable by Deutch gate, so Deutsch
gate is universal for classical computation. Also can implement
reversible function by adding some auxiliary qubits.

In the standard basis of three qubits, the Deutsch gate generator
is: (σx)67 = I

⊗
I
⊗

σx

Toffoli gate (can generate by Deutsch gate) can generate any
permutation operation P of any two basis, then any generator
like (σx)mn can be reached by Pσx)67P

−1

Furthermore, we can reach (σy)mn can be reached by
i[(σx)mk, (σx)kn]
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basic quantum gates

then we can reach the generator (σz)mn can be reached by
i[(σx)mk, (σy)kn]

Now the whole generator of SU(8) can be generated.

at last we can generate a n− qubit Toffoli gate by the
three-qubit Toffoli gates. For example: 4− qubit Toffoli gate
can be generated by
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basic quantum gates

In fact, in universal quantum computation, Three-qubit gates are not
necessary. There are universal two-qubit gates.

We need only prove that there is a two-qubit gates can generate
a 3-qubit Deutsch gate.

we can construct a controlled-U2 gate from controlled-U gates
by

where the power of the U determined by y− (x
⊕

y) + x = 2xy.

So we can construct Deutsch gate from from the controlled-U
controlled U−1 and controlled-NOT gates, where
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basic quantum gates

U = e−iπ/4.Rx(
θ

2
) (77)

when the parameter θ/π is irrational, U−1 and σx gates came as
close as we want. Then Deutsch gate can be generated and it is
universal

In fact, almost all the two-qubit gates (generic gates) are universal.
The prove is similar as the universal of Deutsch gates.

C-NOT and one-qubit gates form a universal set
any controlled-U can be constructed by C-NOT and one-qubit
gates by

Quantum Simulation (USTC) Spring 2011 55 / 91



quantum computation model: computation circuit

basic quantum gates

where
ABC = 1 AσxBσxC = U (78)

The rest problem for quantum circuit is to design optimal circuit to
certain task under a universal set. This problem is very difficult in
general, a generic algorithm is proposed to this problem.
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introduction

the former circuit model is a based on the classical Von
Neumman computation structure, there are many classical
methods can be introduce into quantum situation.

quantum computation based on different physical system, it has
its own character

quantum adiabatical computation is a model which is close
related to many-body physics, it convert the computation
problem to the gap of a many-body physics

quantum adiabatical computation is a good model to consider
the complexity problem.

one-way computer is another model to consider the character of
quantum system. It is very useful to consider fault-tolerant
computation.
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adiabatic theorem

the evolution of a system is according to Schordinger Equation

ih
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (79)

the adiabatic theorem tells us how to follow this evolution in the case
that H(t) is slowly varying

at every time, the Hamiltonian H(t) has its eigenstates and
eigenvalues

H(s)|l; s〉 = El(s)|l; s〉 (80)

where l is the quantum number of time s
suppose the system in state |l = 0; s = 0〉 at the time t = 0
Adiabatic theorem: if the gap between the two lowest levels,
E1(s)−E0(s), is strictly greater than zero for all 0 ≤ s ≤ 1, the
state will stay on |0; s〉 when the H(t) varying enough slow
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adiabatic theorem

define:
gmin = min

0≤s≤1
(E1(s)− E0(s)) (81)

where ε = max0≤s≤1 |〈l = 1; s|dH
ds
|l = 0; s〉|, the evolution time

can be estimate by

T ≥ ε

g2min
(82)

Generally,ε is a stable number, and the time T is determined by
gmin.
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satisfiability problem

An n-bit instance of satisfiability is a formula C1

∧
C2

∧
...
∧
Cn

where each clause Ca is True or False depending on the values of
some subset of the bits. For a single clause, involving only a few
bits. Our task is to judge whether there is an assignment that
satisfies all n clauses.

using 3-SAT problem as an example. 3-SAT problem is a proved
NPC problem.

Every Clause C is associated with the 3 bits, and we can define
an energy function

hC(ziC , zjC , zkC) = 0 (83)

if (ziC , zjC , zkC) satisfies clause C , else it will be 1
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satisfiability problem

the total energy of the problem will be

h =
∑
C

hC (84)

clearly,h ≥ 0and if and only if (z1, z2, ..., zn) satisfies all the
clauses.

To translate this problem to quantum problem, we label a 1/2 spin for
every bit Zi, and we define the Hamiltonian corresponding to hC as

Hp,C(|z1〉|z2〉...|zn〉) = hC(ziC , zjC , zkC)(|z1〉|z2〉...|zn〉) (85)

and the whole Hamiltonian is HP =
∑

C HP,C
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satisfiability problem

In general, it is difficult to find the ground state of HP . While we
consider another easy constructing Hamiltonian HB and its ground
state also easy to find.

the HB,C defined as a sum of one-qubit Hamiltonian, that is
HB,C = H iC

B +HjC
B +HkC

B where H i
B = (1− σx)/2

the whole Hamiltonian will be HB =
∑

C HB,C

the initial state HB is |x1 = 0〉|x2 = 0〉...|xn = 0〉
Now we will design a path to adiabatically connect the initial
Hamiltonian HB and HP , that is,

H(t) = (1− t/T )HB + (t/T )HP (86)

if the evolution is slow enough, the ground state of HB can
adiabatically evolute to the ground state of HP .
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quantum adiabatic algorithm

An easily constructible initial state, which is the ground state of
HB.

A time-dependent Hamiltonian, H(t), that is easily constructible
from the given instance of the problem.

An evolution time T determined by the gap of H(t)

The final state |ψ(T )〉 that for T big enough will be (very
nearly) the ground state of HP .

A measurement of z1, z2, ..., zn in the state |ψ(T )〉. The result
of this measurement will be a satisfying assignment. If the
formula has no satisfying assignment, the result will still
minimize the number of violated clauses.

Quantum Simulation (USTC) Spring 2011 63 / 91



quantum computation model: adiabatical computation

Grover problem

generally, the gap gmin is strongly dependent of the number of
particles. The scaling of this dependence determine the complexity of
the corresponding problem. We will discuss the algorithm by
examples.

The Grover problem: The single clause for this problem, hG,
which depends on all n bits with a unique (but unknown)
satisfying assignment w = w1, w2, ..., wn, the corresponding
Hamiltonian is

HP = I − |ω〉〈ω| (87)

the total Hamiltonian H(s) can be write as

H(s) = (1− s)
∑

j=1,2,...,n

1

2
(1− σjx) + s(1− |0〉〈0|) (88)

where |ω〉 has locally unitary transform to |0〉 and the spectra is
unchange.
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Grover problem

Since H(s) and the initial state of H(0) are symmetric under
the interchange of any two qubits, we can just work in the
(n+ 1)− dimensional space of symmetrized states and define

the symmetry operator ~S = (Sx, Sy, Sz)

Sα =
1

2

n∑
j=1

σjσ (89)

the state can be relabeled as mz which range from −n/2 to
n/2. And we can rewrite H(s) as

H(s) = (1−s)[n/2−Sx]+s(1−|mz = n/2〉〈mz = n/2|) (90)

the rest task is to estimate the gap scaling between the lowest
two eigenvalues at some time s
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H(s)|ψ〉 = E|ψ〉 (91)

operating the bra vector〈mx = n
2
− r| on the left and let

E = s+ (1− s)λ, we get

1− s
s
〈mx =

n

2
−r|ψ〉 =

1

r − λ
〈mx =

n

2
−r|mz =

n

2
〉〈mz =

n

2
|ψ〉

Multiply by 〈mz = n
2
|mx = n

2
− r〉 and sum over r to get

1− s
s

=
n∑
r=0

1

r − λPr
(92)

where Pr = |〈mz = n
2
|mx = n

2
− r|2 = 1

2n
Cr
n
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Grover problem

with the former eigenvalue equation,for certain s in 0 < s < 1, the
lowest two roots of the equation are λ < 0 and 0 < λ < 1

since we just consider the scaling of the gap, we consider the
parameter s∗ satisfy 1−s∗

s∗
=

∑n
r=1

pr
r

, then the eigenvalue equation
will be

P0

λ
=

n∑
r=1

Pr
λ

r(r − λ)
(93)

let λ = 2−n/2u,the former equation will be

1

u
=

n∑
r=1

Pr
u

r(r − 2−n/2u)
(94)

neglect the 2−n/2u part to get 1
u2

=
∑n

r=1
Pr
r2
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Grover problem

with the former equation to get λ = ±(
∑n

r=1
pr
r2

)−1/22−n/2, then the
gap can be expressed as

gmin ≈ 2(1− s∗)(
n∑
r=1

pr
r2

)−1/22−n/2 (95)

So we can get the scaling of the gap

gmin ≈ 2.2−n/2 (96)
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Exact Cover problem

Exact Cover Problem is a NPC problem. Exact Cover is a restricted
form of Satisfiability.

An n-bit instance of Exact Cover is built up from clauses, each of
which is a constraint imposed on the values of three of the bits,
zi + zj + zk = 1. An n-bit instance of Exact Cover is a list of triples
(i, j, k) indicating which groups of three bits are involved in clauses.
The problem is to determine whether or not there is some assignment
of the n bit values that satisfies all of the clauses.

HB is the magnetic field in the x−direction,and all the qubits are
initial at the x-direction

|ψg(0)〉 =
1

2n/2

∑
|z1〉|z2〉...|zn〉 (97)
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Exact Cover problem

the Hamiltonian HP defined as

HP |z1〉|z2〉...|zn〉 = h(z1, z2, ..., zn)|z1〉|z2〉...|zn〉 (98)

where h =
∑

C hC and hC is the cost function to violate the clause
C.

the time dependent Hamiltonian can be given by

H(t) = (1− t

T
)HB +

t

T
HP (99)

we measure the state |ψ(T )〉 at time T , the probability to get the
right answer (can be checked quickly) determined by parameter |cω|2

the probability of success depend on the parameter T
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Exact Cover problem

we consider this quantum algorithm by some random generate
instances.

scaling with n
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Exact Cover problem

phase transition
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introduction

one-way computer is another special quantum model of quantum
computation, it show some key characters of quantum physics

the power of one-way computer is the same as the former two models

one-way computer have many advantages in discussion the fault
tolerant computation

it also convenient to use this model to investigate the relation
between correlation and computation

one-way computer just need one-qubit measurements after the state
preparation
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graph state

there are two ways to define a graph state for a given graph

defined by operations which is suited to preparation the state

prepare all the qubits in the state |+〉

operate CZ on the qubits connected by edges of the graph, CZ is
commute for each other

where CZ = Diag{1, 1, 1,−1}
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graph state

the other way to define a graph state is based on some stabilizers.
For every vertices, we define a stabilizer for vertex a

Ka = σxaΠb∈Naσ
z
b (100)

where Na is the neighbor set of a all the stabilizers are commute,and
the have the common eigenvector. all the stabilizers in the graph
state is equal to 1. we define the Hamiltonian

H = −
∑
a

Ka (101)

the ground state of H is defined as the graph state |G〉.
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character of graph state

the stabilizers have a binary representation

that is, (X|Z) = (I|Γ) where γ is the adjacency matrix of graph G.
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character of graph state

all the state generate by |W 〉 = σWz |G〉 will be a complete set of 2n

dimensional Hilbert space, where W is a n− bit string which satisfies
Ka|W 〉 = (−1)Wa|W 〉

the density matrix of |G〉 is 1
2N

∑
σ∈S σ where S is the set of the

stabilizer. Let A ∈ V be subset of vertices for a graph G = (V,E)
and B is the complement of A. The reduced state ρAG = trB(|G〉〈G|)
is given by ρAG = 1

2|A|

∑
σ∈SA σ where σ supported by A.

Pauli group: generated by {±i, σx, σy, σz} . Clifford group:
transformations from Pauli group to Pauli group. If two graph states
satisfy |G′〉 = C|G〉 where C is an operator in clifford group, then
these two graph states are equal under Clifford group

any stabilizer state can be translated to a graph state by LC.
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character of graph state

By local complementation of a graph G at some vertex a ∈ V , one
obtains an LC-equivalent graph state |τa(G)〉,Furthermore, two
graph states |G〉 and |G〉 are LC-equivalent iff the corresponding
graphs are related by a sequence of local complementations.

where operate vertices is 3, 2, 3, 1, 3, 1, 3, 4, 1, 2 respectively.
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measurement of graph state

A projective measurement of σx, σy, orσz on the qubit associated
with a vertex a in a graph G yields up to local unitaries Ua

i, , a new
graph state |G〉 on the remaining vertices. The resulting graph G is

P a
z,±|G〉 =

1√
2
|z,±〉a

⊗
Ua
z,±|G− a〉 (102)

P a
y,±|G〉 =

1√
2
|y,±〉a

⊗
Ua
y,±|τa(G)− a〉 (103)

P a
x,±|G〉 =

1√
2
|x,±〉a

⊗
Ua
x,±|τb0(τaτb0(G)− a)〉 (104)

and the local unitaries are defined as
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measurement of graph state

Ua
z,+ = 1 Ua

z,− = σNaz (105)

Ua
y,+ =

√
−iσz

Na
Ua
y,− =

√
+iσz

Na
(106)

Ua
x,+ =

√
+iσy

b0
σ
Na−(Nb0

∨
b0)

z (107)

Ua
x,− =

√
−iσy

b0
σ
Nb0−(Na

∨
a)

z (108)

That is the final graph can be obtained from the initial graph G by
means of vertex deletion and local complementation:

σz: deleting the vertex a from G;

σy: inverting G[Na] and deleting a;

σx: choosing any b0 ∈ Na, inverting G[Nb0 ], applying the rule for σy
and finally inverting G̃[Nb0 ] again.
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measurement of graph state

Furthermore, the commutation relation between Pauli measurement
and Clifford operator can be given as
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measure based computation

Based on the special entanglement graph state, the computation can
be done on it by some one-qubit measurement.

we can just prove that a universal gate set can be reached by one
qubit measurement on graph state, here we consider the universal set
including CZ gates and local one qubit unitary transformation.

to make clear, we first consider the teleportation based computing

one qubit unitary transformation: The projection of |α〉1|φ〉23 onto
|φ(U)12 results in the state 1

dU |α〉3 at qubit 3, where
|φ(U)〉 = U †

⊗
I|φ〉
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measure based computation

two qubits CZ gate:

The wiggly line connecting 12 denotes an input 2-qubit state |ψ〉.
The lines labeled H denote the maximally entangled state |H〉.

3-qubit Bell measurement corresponding to the basis
|000〉 ± |111〉, |001〉 ± |110〉, |010〉 ± |101〉, |100〉 ± |011〉.

the measurement is performed on qubits 135 and 246 then the qubits
78 acquire the state (Pi

⊗
Pj)(H

⊗
H)CZ|ψ〉 where the Pauli

operators Pi and Pj depend on the measurement outcomes.
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measure based computation

now we turn to the computation based on the graph state which only
need one-qubit measurement which is different with the former
teleportation based quantum computing.

one-qubit unitary transformation

where ξ, η, and ζ are Euler angles for U , any U can be expressed as
U = Rx(ζ)Rz(η)Rx(ξ).

The leftmost qubit, denoted by a star, is set in state |ψ〉 and
extended by a row of four |+〉 states denoted by dots. CZ
operations are then applied, denoted by connecting lines.

measurements are applied in the designated bases with outcomes si.
Hence the measurements must be carried out adaptively from left to
right.

As a result of this process the rightmost (unmeasured) qubit is left in
state Xs2+s4Zs1+s3U |ψ〉
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measure based computation

measurements are applied in the designated bases with outcomes si.
Hence the measurements must be carried out adaptively from left to
right.
As a result of this process the rightmost (unmeasured) qubit is left in
state Xs2+s4Zs1+s3U |ψ〉

two qubit CZ gate by one-qubit measurement on graph state

The 2-qubit input state |ψin〉 is placed at sites labeled in1 and in2.
Dots denote |+〉 states and connecting lines denote application of CZ
for cluster state generation.
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measure based computation

If the measurement pattern shown at the right is applied at the sites,
then only sites out1 and out2 remain unmeasured and contain
(P1

⊗
P2)CZ|ψin〉 where P1

⊗
P2 is a Pauli operation that depends

on the measurement outcomes.

so the measurement on certain configuration graph state can
implement universal computation. To require the graph state can be
used to universal computation, does it have some special structure of
the graph?

one-dimension graph state is not universal for quantum computation.
It can be simulated by classical computer efficiently.

the computation power of a graph state maybe depend on the depth
of its under graph. some popular lattice are universal.
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measure based computation QFT

At last, we will give a one-qubit measurement on a square lattice to
realize the simple 3-qubit QFT algorithm.

this is the measure pattern on 13× 5 lattice, the measurement like
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after the σz measurement, we get the following graph
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after all the Pauli measurement except the input qubits, we get the
following graph
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